
DOI: 10.4018/IJGHPC.336474

International Journal of Grid and High Performance Computing
Volume 16 • Issue 1

This article published as an Open Access article distributed under the terms of the Creative Commons Attribution License
(http://creativecommons.org/licenses/by/4.0/) which permits unrestricted use, distribution, and production in any medium,

provided the author of the original work and original publication source are properly credited.

*Corresponding Author

1

An Approach for Detecting Local
Outliers in Grid Queries
Shuang Li, Hunan International Economics University, Changsha, China

Xiaoguo Yao, Hunan International Economics University, Changsha, China*

ABSTRACT

The density local outlier factor algorithm (LOF) needs to calculate the distance matrix for k-nearest
neighbor search. The algorithm has high time complexity and is not suitable for the detection of
large-scale data sets. A local outlier detection algorithm is proposed based on grid query (LOGD).
In the algorithm, the k other data points closest to the data point in the target grid must be in the
target grid or in the nearest neighboring grid of the target grid, it is used to improve the neighborhood
query operation of the LOF algorithm, the calculation amount of the LOF algorithm is reduced in the
neighborhood query. Experimental results show that the proposed LODG algorithm can effectively
reduce the time of outlier detection under the condition, the detection accuracy of the original LOF
algorithm is basically the same.

KeywORDS
Distance matrix, Grid, k-nearest neighbors, Local outlier factor (LOF), Memory, Neighborhood query

1. INTRODUCTION

Outlier detection is one of the basic tasks of data mining. Its purpose is to eliminate noise
or discover potential and meaningful knowledge(Li X, Lv J, Yi Z., 2018). After long-term
development, outlier detection has been widely used in fraud detection, intrusion detection, and
abnormal natural climate discovery.

Outlier detection can be roughly divided into five categories based on distribution, bias, clustering,
distance, and density(Peng T. & Yang N. Y.,2018; Zhu L. & Qiu Y. Y.,2017; Xu H. L. & Tang S.,
2017; Marateb H R & Rojas-Martínez M,2012). The representative density-based algorithm is the
LOF algorithm (Breunig M M & Kriegel H P, 2000), local outlier factor (lof) is used to represent the
degree of local outlier of an object. The larger the lof value, the higher the degree of outlier of the
data. However, the LOF algorithm also has huge defects, that is, it needs to calculate the distance
matrix to determine the k nearest neighbor distance, but a large amount of memory consumption
makes outlier detection of large-scale data sets unacceptable. In response to this problem, Lee J et
al. used a grid to divide the data (Lee J & Cho N W, 2016), and then calculated the local outliers
between the centroid points of each grid. Zhang J. et al. proposed a dense grid method (Zhang J.

International Journal of Grid and High Performance Computing
Volume 16 • Issue 1

2

& Sun Z. H., 2011), the data in the dense cell grid was eliminated first, the lof value of each data is
calculated in the remaining data. Although the above two algorithms speed up the calculation, the
spatial distribution characteristics of the data is not considerd, and the detection accuracy rate needs
to be improved. Rundensteiner E A proposed a fast branch reduction strategy TOLF that does not need
to calculate knn (Yan Y Z & Cao L, 2017). This method performs well on multiple data sets. Kim D et
al. proposed the DILOF algorithm (Na G S & Kim D, 2018). Inthis method, a new sampling method
is used to avoid data distribution assumptions, while new distance approximation techniques are use
to speed up detection. In addition, some scholars have proposed clustering to exclude non-outliers
before performing outlier detection (Yin N. & Zhang L.., 2017; Cao K. Y. & Luan F. J.,2017; Wang
J. H. & Jin P., 2015), adding information entropy to determine attribute weights, and reducing the
impact of attribute differences on outlier detection(Wang J. H. & Zhao X. X.,2013; Xin L. L. & He W.,
2015; Hu C. P. & Qin X. L., 2010), using parallel computing (Bai M & Wang X,2016; Wang X. T. &
Shen D. R., 2016), introduction of square neighborhoods (Jie C. M. & Liu H. J.,2012), introduction
of rough sets(Yuan Z. & Feng S., 2018), and use of average density (Zhou P. & Cheng Y. Y., 2017).

Although many published algorithms have been proposed in recent years to improve the LOF,
these algorithms improve the detection efficiency by reducing the number of data points or attributes,
and the influence of the filtered data points is ignored on outliers. Aiming at this problem, in this
paper, an outlier detection algorithm LOGD is proposed based on grid query. The data is mapped
to the grid, and the grid can remember the relative position information between the data points. By
querying the adjacent grid of the target grid, the k nearest neighbors of the data points are queried
in the target grid, the distance calculations between data are reduced in the LOF algorithm when
performing k-nearest neighbor query, and the local outlier value of each data is finally calculated.
This algorithm can reduce the amount of calculation and improve the detection speed, while still
having the same accuracy rate as the original LOF algorithm.

2. BASIC CONCePTS OF THe LOF ALGORITHM

Local outlier factor (LOF) algorithm is a popular method for outlier detection in data mining. It is
based on the concept of local density and compares the density of an instance to its neighbors to
identify outliers (Breunig M. M.,2000; Tang J., 2015; Wen J.,2013; Saeed H.,2017).

The basic idea behind LOF is that outliers are instances that have significantly lower density
compared to their neighbors. LOF measures the degree of outlierness for each instance by examining
the local density ratio. It calculates the LOF score for an instance by comparing its local reachability
density (LRD) to the LRDs of its k-nearest neighbors. If an instance has a much lower LRD than its
neighbors, it is considered an outlier.

Definition 1: (k-th distance of object p: k-distance (p)). For any natural number k, dataset D,
define the k-th distance of p as the distance between p and some object o, and record it as k- distance
(p), where the object o meets the following conditions:

(1) At least k objects o′∈ D\{p} satisfy: d (p, o′) ≤ d (p, o)
(2) At most k-1 objects o′∈ D\{p} satisfy: d (p, o′) <d (p, o)

Where the distance between object p and object o is written as d (p, o).
Definition 2: (k-th distance neighborhood of object p: Nk(p)) . Given the k-distance(p) of data

object p, the k-th distance neighborhood of object p is the set of data points that its distance from p
does not exceed k-distance(p):

Nk (p) = {q | d (p, q) ≤ k-distance (p)} (1)

International Journal of Grid and High Performance Computing
Volume 16 • Issue 1

3

Therefore, the number of k-th neighbor points of the object p is | Nk (p) | ≥ k.
Definition 3: (The reachable distance of object p relative to object o: reach-dist(p, o)). The

reachable distance of object p from object o to k is the maximum value between k nearest neighbors’
distance of p and the distance from p to o, which is defined as follows:

reach-dist (p, o) = max {k-distance(p), d(p, o)} (2)

Definition 4: (Local reachable density of object p: lrdk(p)). The local reachable density of object
p is the inverse of the average reachable density of object p from the point to p in the neighborhood
of the k-th distance, it is expressed as Equation (3):

lrd p
reach disp p

N p
k

o N p k

k

k() =
− ()
()

∈ ()∑
1

0
/

,
 (3)

Definition 5: (local outlier factor of object p: lofk(p)). The local outlier factor of object p represents
the outlier degree of object p, it is expressed in equation (4):

lof p
lrd o

lrd p
N p

k
o N p

k

k

k

k

() = ()
() ()

∈ ()
∑ / (4)

If the lof value of the object p is larger, the outlier degree of the object p is higher, and the more
likely it is an outlier. On the contrary, the probability that the object p belongs to a certain cluster
is higher.

Local Outlier Grid Detection (LOGD) algorithm is a variation of the LOF algorithm that
incorporates the concept of grid-based partitioning. LOGD divides the data space into a grid structure
and calculates the local density of instances within each grid cell. It then applies the LOF algorithm
to identify outliers based on the density information obtained from the grid cells.

The relationship between LOF and LOGD is that LOGD is an extension or modification of the
LOF algorithm that incorporates grid-based partitioning to improve efficiency and scalability. By
dividing the data space into grid cells, LOGD reduces the number of distance calculations required,
making it more efficient for large datasets. However, the fundamental concept of measuring local
density and comparing it to the neighbors remains the same in both LOF and LOGD.

In summary, LOF is a general outlier detection algorithm that measures outlierness based on
local density, while LOGD is a specific variation of LOF that incorporates grid-based partitioning
for enhanced efficiency.

3. LOGD ALGORITHM

The computational efficiency of the Local Outlier Factor (LOF) algorithm is primarily determined
by the neighborhood query operation. This study proposes the utilization of a grid structure to store
and retrieve data location information within neighboring grids, thereby optimizing the neighborhood
query process in the LOF algorithm. The algorithmic steps can be outlined as follows:

• Grid Partitioning: The dataset is divided into a grid structure to efficiently store the characteristics
of data distribution in different regions.

International Journal of Grid and High Performance Computing
Volume 16 • Issue 1

4

• Grid-based Neighbor Search: The grid structure is leveraged to perform neighbor queries, enabling
rapid identification of data points within the vicinity of a given point of interest.

• Local Density Calculation: The local density of each data point is computed based on the number
of neighboring points found within a predefined distance threshold.

• LOF Computation: The LOF for each data point is calculated by comparing its local density with
that of its neighbors, providing a measure of its outlying behavior within its local neighborhood.

By integrating grid-based optimization, the LOF algorithm aims to enhance its scalability and
efficiency in identifying local outliers within large datasets. This approach can significantly reduce
the time complexity associated with the neighborhood query operation, making the LOF algorithm
more practical for real-world applications involving extensive data analysis.

3.1 Meshing
Given a d-dimensional data set D, the number of data is N. Let the value of the i-th dimension be
in the interval Rgi = [li, hi] (i = 1,2,…, d), then S = Rg1 × Rg2 ×… × Rgd is the d-dimensional data
space. Each dimension of the data space is divided into equal-length and disjoint intervals. Thereby,
grid cells are formed. On each dimension, these grids are left-closed and right-open. In this way, the
data space is divided into ∏numi super-rectangular grid cells of equal volume (numi is the number
of intervals in the i-th dimension of the data space). The grid side length is given in equation (5):

length a h l N
i

d

i i
d= × −()
=
∏
1

/ (5)

where a is the grid control factor (Han L. Z. & Qian X. Z.,2018), it is used to control the grid size.
After several experiments, the meshing effect in this paper is better when a = 1.7. The number of
grids in each dimension is Equation (6):

num
h l

length
i i=
−

 (6)

In this way, each dimension of the data space is divided into grids of equal length and disjointness.
These grids are left-closed and right-opened in each dimension.

3.2 Data Binning
Data binning, also known as data discretization, involves mapping each object in a dataset to the
corresponding grid. For a given data object X = (x1, x2,…, xn), the subscript of the grid in each dimension
can be calculated using Equation (7). This process partitions the continuous attribute values into
discrete intervals, effectively organizing the data into a grid structure for efficient storage and retrieval.

index
x l

Len
i i=
−

 (7)

Binning is a crucial preprocessing step in data analysis and mining, as it enables the handling
of large datasets by reducing the computational complexity associated with continuous data. By
discretizing the data into grids, the binning process facilitates neighborhood queries, density

International Journal of Grid and High Performance Computing
Volume 16 • Issue 1

5

calculations, and outlier detection in algorithms such as the Local Outlier Factor (LOF). Additionally,
binning can aid in visualizing and interpreting data patterns, especially in multidimensional spaces,
by simplifying the representation of continuous data into a discrete form.

The use of data binning has wide-ranging applications in various fields, including machine
learning, data warehousing, and spatial data analysis. It provides a systematic approach to organizing
and processing data, contributing to the efficiency and interpretability of analytical tasks. As datasets
continue to grow in size and complexity, the role of data binning becomes increasingly significant
in optimizing data analysis processes.

3.3 Optimize Neighborhood Queries
LOGD is the improvement of the LOF algorithm, it is mainly reflected in the optimization of
neighborhood queries. This step is divided into the following two steps:

• Query grid Gi in order (i = 1, 2, ..., n, where n is the number of grids). If there are no data points
in the grid, query the next grid.

• If the number of data in the query grid Gi is not 0, then Gi is used as the center grid, the adjacent
grids of the Gi grid is queried, and then the query grids are merged all into the grid G (As shown
in Figure 1, the dark gray grid is Gi, and the dark and light gray grids are merged into grid G).
If the number of data contained in grid G is less than K + 1 (K is the k-th nearest neighbor
parameter), the grid G is used as the center to continue to query the neighboring grids of grid
G, and then all the query grids are combined as the new grid G (see Figure 2, the dark gray grid
is Gi, the medium gray is the grid G formed by the previous grid merge, all the gray grids are
the second grid merge to form a new grid G). The number of data points is calculated in grid G.
If the number of data points is less than K + 1, the above query step is repeated. If the number
of data points is greater than K + 1, calculate the distance between each data dj in the Gi grid
and all the data in G, and find the k nearest neighbor data points of dj, and record the k nearest

Figure 1. First grid query

International Journal of Grid and High Performance Computing
Volume 16 • Issue 1

6

neighbor distance of data point dj as k-distance(dj), k-distance(dj) is the numbered set of each
data point in the neighborhood of Nk(dj) and k-distance.

In this step, adjacent meshes are defined in two-dimensional data as a group of meshes with
common edges or vertices, and they appear as a set of hyperrectangles with common faces and vertices
in a super rectangle, The grid can be up to 3d-1

3.4 Find Outliers
To identify outliers, the Local Outlier Factor (LOF) value is computed for each data point based on
formulas (3) and (4). The LOF quantifies the outlying behavior of a data point in its local neighborhood.
If the LOF value of a data point exceeds a predefined threshold, denoted as ε, the data point is classified
as an outlier; otherwise, it is considered a non-outlier.

The LOF threshold, ε, is a critical parameter that influences the sensitivity of the
outlier detection process. Setting an appropriate ε value is essential for accurately
distinguishing outliers from non-outliers. A higher ε value may result in a more lenient
outlier classification, while a lower ε value can lead to a stricter classification, potentially
identifying fewer outliers.

Furthermore, the LOF threshold ε can be determined through various methods, including
statistical analyses, domain knowledge, or through iterative experimentation to achieve the desired
outlier detection performance.

In practical applications, the identification of outliers through the LOF algorithm and the
determination of an optimal LOF threshold ε play a crucial role in anomaly detection, fraud
detection, and quality control across diverse domains such as finance, healthcare, and manufacturing.
Additionally, the flexibility in setting the LOF threshold allows for customization based on specific
requirements and the characteristics of the dataset, contributing to the adaptability and effectiveness
of the outlier detection process.

Figure 2. Second grid query

International Journal of Grid and High Performance Computing
Volume 16 • Issue 1

7

3.5 Local Outlier Grid Detection (LOGD) Algorithm Detailed Description
The pseudo code of the local outlier detection algorithm based on grid query is as follows.
1. input: D, K, ε;
2. numbered for each data point;
3. put data ∈ D into grids;
4. for Gi in Grid // Grid for all grid collections
5. if the number of data in Gi: NGI> 0
6. G0 = Gi;
7. while 1
8. query the adjacency grids of Gi;
9. merge Gi and G′i adjacency grids as G;
10. if the number of data in G: NG> = K + 1
11. break;
 else
12. make G as Gi;
13. calculate distance between data in G0 and G;
14. record: k-distance (d), j N (k d) j and data number
15. calculate lrd (k p); i // pi is the data object in dataset D
16. calculate lof (k p); i
17. for p in D
18. if lof (p) i> ε
19. p will be marked as outlier;
20. output all outliers;

Here’s the pseudo code for the local outlier detection algorithm based on grid query:

function LocalOutlierFactor(GridSize, MinPts, Dataset):
 // Step 1: Divide the dataset into a grid structure
 Grid = DivideIntoGrids(Dataset, GridSize)

 // Step 2: Compute the local density for each data point
 for each data point X in Dataset:
 Neighbors = GridQuery(Grid, X, GridSize)
 if |Neighbors| < MinPts:
 X.local_density = LOW
 else:
 X.local_density = ComputeLocalDensity(X, Neighbors)

 // Step 3: Compute the Local Outlier Factor (LOF) for each
data point
 for each data point X in Dataset:
 Neighbors = GridQuery(Grid, X, GridSize)
 X.LOF = ComputeLOF(X, Neighbors)

 return Dataset

In this pseudo code, the DivideIntoGrids function divides the dataset into a grid structure based on
the specified GridSize. The GridQuery function retrieves the neighboring data points within a specific

International Journal of Grid and High Performance Computing
Volume 16 • Issue 1

8

grid size. The ComputeLocalDensity function calculates the local density of a data point based on its
neighbors, while the ComputeLOF function computes the Local Outlier Factor for each data point.

This pseudo code outlines the basic steps of the local outlier detection algorithm based on grid
query, where the local density and LOF are computed for each data point to identify outliers within
the dataset.

4. LOGD ALGORITHM PeRFORMANCe ANALySIS

The performance analysis of LOGD algorithm is mainly explained from three aspects: algorithm
innovation point, time complexity analysis, and experimental results.

4.1 Algorithm Innovation
The core idea of the LOGD algorithm is mainly reflected in the use of the unique memory of the grid
to optimize the neighborhood query operation of the LOF algorithm, which is specifically reflected
in the following two aspects.

(1) Only the distance between all the data in the grid covered by the target grid and its adjacent grids
need to be considered, and the distance between the data in the target grid and all the data in the
entire data set need not be considered. Greatly reduces the amount of calculations in neighborhood
queries.

(2) Each time a target grid is determined, and then its adjacent grids are queried until the stop query
condition is satisfied, this is as a grid operation. The calculation of the distance between the data
in this grid operation is only to calculate the distance between the data in the target grid and all
the data involved in this grid operation, not the distance between all the data in this operation.
This also reduces the amount of calculation for distance.

4.2 Algorithm Time Complexity Analysis
Suppose d-dimensional data D, the number of data is N, and the number of divided grids in each
dimension is m, then the average number of data in each grid is n = N /md. In a multi-dimensional
case, each mesh has a maximum of 3d-1 adjacent meshes. In the worst case, each grid and its adjacent
grids need to be queried once, but only the distance between the data in the central grid and all the
data in the query grid is calculated, so the time complexity is O(f (N, d, m)) at this time, then there
is the following formula:

O(f (N, d, m)) <3d × n × n × md
O(f (N, d, m)) <3d × (N / md) × (N / md) × md
O(f (N, d, m)) <(3 / m) d × N2

And because the number of grids is the same in each dimension, let HL = hi-li, then thre is the
following formula:

Len
a HL

N
m

HL

Lend
=
×

=, = N

a

d

m is put into the above inequality, there is the following formula:

O(f (N, d, m)) <(3a)d × N

International Journal of Grid and High Performance Computing
Volume 16 • Issue 1

9

Its time complexity is O(kN), which is linear time complexity.

4.3 experimental Results
In order to verify the effectiveness of the algorithm in this paper, the LOF and gridLOF (Lee J & Cho
N W, 2016) algorithms were compared with the LOGD algorithm. Four data sets were selected in the
experiment. The relevant attributes of the data set are shown in Table 1. All the algorithms in this
article are implemented and processed with MATLAB R2016a tool. The experimental environment
is: CPU is Intel i5 2.50 GHz; memory is 8 GB; OS is Windows 7.

After several experimental comparisons, the parameters of each algorithm with the best detection
results are shown in Table 2, where k represents the k-th neighbor, e represents the local outlier factor
threshold, and Gn represents the number of grids in each dimension in the grid-LOF algorithm.

When the optimal parameters are selected, the detection effect of each algorithm is shown in
Figures 3-6.

For the analysis of Figures 3 ~ 6, for the Ag data set with a more evenly distributed data set,
each algorithm can detect outliers, and the detection results of the LOF algorithm and the LOGD
algorithm are basically the same. For data set Jain with uneven density distribution, all algorithms
can also detect outliers, but since the k-th nearest neighbor parameter of the LOF algorithm is global-
oriented, when the data distribution density is greatly different, the LOF algorithm can easily identify
the sparse density cluster interior points as outliers, the grid-LOF algorithm performs a k-nearest
neighbor query on the grid centroid, and the grid centroid is less affected by the data density. This
also results in the LOF and LODG algorithms that there is better detection accuracy in the Jain dataset
than the grid-LOF algorithm, but the false detection rate is also high. For the pb and data4 datasets,
the amount of data in the data4 dataset is greater than the pb dataset, but the commonality between
these two datasets is that the boundary between clusters is not obvious in the case of LOF and LOGD,
if the local outlier threshold e is selected to be too small, the false detection rate is high, and if it is
selected to be too large, the detection accuracy is reduced. The grid-LOF algorithm does not consider
the spatial distribution of data points in the grid. The cluster edge grid may contain outliers and intra-
cluster points. Once the centroid is calculated by the cluster edge grid, it is determined to be an outlier,
its Intra-cluster points can be misidentified as outliers. If the calculated centroid is determined as an

Table 1. Experimental dataset related attributes

data set number cluster attribute noise noise rate/%

Ag 888 7 2 39 4.39

Jain 423 2 2 26 6.15

pb 350 3 2 36 10.29

data4 5 050 4 2 59 1.17

Table 2. Various algorithm parameters

data set
LOF LOGD grid-LOF

k e k e k e Gn

Ag 10 1.291 10 1.291 8 1.275 30

Jain 11 1.279 11 1.279 14 1.280 27

pb 6 1.235 6 1.235 12 1.229 50

data4 20 1.549 20 1.549 9 1.305 60

International Journal of Grid and High Performance Computing
Volume 16 • Issue 1

10

Figure 3. Effects of various algorithms in the Ag dataset

Figure 4. Effects of various algorithms in the Jain dataset

International Journal of Grid and High Performance Computing
Volume 16 • Issue 1

11

Figure 5. Effects of various algorithms in the pb dataset

Figure 6. Effects of various algorithms in the data4 dataset

International Journal of Grid and High Performance Computing
Volume 16 • Issue 1

12

intra-cluster point, outliers in the cluster edge grid will be determined as intra-cluster points, which
will also cause misdetection. In the case where the boundaries between clusters are not obvious, all
three algorithms do not solve them well.

Here are the accuracy indicators of three algorithms for measuring LOF, grid-LOF and LOGD:

Accuracy
correctly foundoutliers

actualoutliersinthed
�

� �

� � � �
=

aataset
×� %100

Falsedetectionrate
numberof incorrectlydetectedoutli

� � �
� � � �

=
eers

numberof actuallydetectedoutliers� � � �
� %×100

On these four data sets, the detection accuracy and false detection rate of each algorithm are
shown in Figures 7 and 8.

Figure 7. Accuracy of each algorithm on four data sets

Figure 8. False detection rate of each algorithm on four data sets

International Journal of Grid and High Performance Computing
Volume 16 • Issue 1

13

In Figures 7 and 8, it can be seen that the LOF and LOGD algorithms have higher detection
accuracy than the grid-LOF algorithm in the detection accuracy rate, but on the Jain dataset with
uneven density distribution of the data set, although the detection accuracy of the LOF and LOGD
algorithm is high, but the false detection rate is also high.

In addition to the accuracy and false detection rate to measure the accuracy of the algorithm, the
efficiency of the algorithm needs to be measured in terms of the algorithm’s running time. As are
shown in Figure 9, the running time of each algorithm on four data sets is compared.

By analyzing Figure 9, the running time of the LOF algorithm is the longest. For the LOGD
algorithm, the running time is greatly reduced due to the improved k nearest neighbor query operation.
The running time of the grid-LOF algorithm is closely related to the number of grids. When the
grid-LOF detection accuracy is high, the number of grids in each dimension is also large, and the
corresponding running time is also long. On the data4 data set in Figure 9, the running time of the
LOGD algorithm is shorter than the grid-LOF algorithm. Therefore, the LOGD algorithm performs
best in the comprehensive detection accuracy and running time.

5. CONCLUSION

In this paper, we propose an outlier detection algorithm called Local Outlier Grid Detection (LOGD)
based on grid query. The algorithm involves mapping the data to a grid structure, which enables the
grid to retain the relative position information between data points. By querying the adjacent grids of
a target grid, we can retrieve the k nearest neighbors of data points within the target grid. This query
approach reduces the number of distance calculations required between data points when performing
the k-nearest neighbor search in the LOF algorithm.

Furthermore, we recalculate the size of the local outlier for each data point using the queried k
nearest neighbors within the target grid. This recalibration helps in reducing the computation overhead
and significantly improves the detection speed, while maintaining the same level of accuracy as the
original LOF algorithm.

However, a notable challenge in the LOGD algorithm is the repeated calculation of distances
between data points in adjacent grids. To address this issue, we propose utilizing a suitable data
structure to store the distance matrix between data points in adjacent grids. This will be a subject of
further investigation and study in our future work.

Figure 9. Run time of each algorithm on four data sets

International Journal of Grid and High Performance Computing
Volume 16 • Issue 1

14

Overall, the proposed LOGD algorithm offers a more efficient and scalable approach to outlier
detection by leveraging grid-based partitioning and optimizing the distance calculation process.
The experimental results demonstrate its effectiveness in reducing computational complexity while
maintaining the detection accuracy of the original LOF algorithm.

ACKNOwLeDGMeNT

This work is sponsored by 2022 Hunan Province General Higher Education Teaching Reform
Research Project (Xiang Jiao Tong [2022] No. 248) PBL Teaching Model Reform and Practice
of New Media Operation Technology (HNJG-2022-1163), China. In 2022, Hunan International
Economics University first-class undergraduate course (Hunan International Economics University
(2023) No. 15) “New Media Operation Technology” online first-class course (19).2023 Education
Reform Project of Hunan International Economics University: Research on Hybrid Teaching Mode
of “New Media Operation Technology” based on STEM Education Concept, Hunan International
Economics University, No.43, No.55 [2023].

CONFLICT OF INTeReST STATeMeNT

We declare that we have no financial and personal relationships with other people or organizations
that can inappropriately influence our work, there is no professional or other personal interest of any
nature or kind in any product, service and/or company that could be construed as influencing the
position presented in, or the review of, the manuscript entitled.

International Journal of Grid and High Performance Computing
Volume 16 • Issue 1

15

ReFeReNCeS

Bai, M., Wang, X., Xin, J., & Wang, G. (2016). An efficient algorithm for distributed density-based outlier
detection on big data. Neurocomputing, 181(C), 19–28. doi:10.1016/j.neucom.2015.05.135

Breunig, M. M., Kriegel, H. P., Ng, R. T., & Sander, J. (2000). LOF: identifying densitybased local outliers.
In: Proceedings of the 2000 ACM SIGMOD International Conference on Management of Data. (pp.93-104).
Dallas, Texas, USA: ACM. doi:10.1145/342009.335388

Cao, K. Y., Luan, F. J., & Sun, H. L., e al. (2017). Density-based local outlier detection on uncertain data. Chinese
Journal of Computers, 40(10), 2231–2244. doi:10.11897/SP.J.1016.2017.02231

Han, L. Z., Qian, X. Z., & Luo, J. (2018). Multi-density clustering algorithm DBSCAN based on region division.
Jisuanji Yingyong Yanjiu, 35(6), 1668–1671. doi:10.3969/j.issn.1001-3695.2018.06.015

Hu, C. P., & Qin, X. L. (2010). A Density-Based Local Outlier Detecting Algorithm. Journal of Computer
Research and Development, 47(12), 2110–2116.

Jie, C. M., Liu, H. J., & Zhu, Q. S. (2012). Square symmetric neighborhood based local outlier detection algorithm.
Jisuanji Yingyong Yanjiu, 29(2), 472–474. doi:10.3969/j.issn.1001-3695.2012.02.018

Lee, J., & Cho, N. W. (2016). Fast outlier detection using a grid-based algorithm. PLoS One, 11(11), e0165972.
doi:10.1371/journal.pone.0165972 PMID:27832163

Li, X., Lv, J., & Yi, Z. (2018). An efficient representation-based method for boundary point and outlier detection.
IEEE Transactions on Neural Networks and Learning Systems, 29(1), 51–62. doi:10.1109/TNNLS.2016.2614896
PMID:27775542

Marateb, H. R., Rojas-Martínez, M., Mansourian, M., Merletti, R., & Mañanas Villanueva, M. A. (2012). Outlier
detection in high-density surface electromyographic signals. Medical & Biological Engineering & Computing,
50(1), 79–89. doi:10.1007/s11517-011-0790-7 PMID:21698432

Na, G. S., Kim, D., & Yu, H. (2018). DILOF: effective and memory efficient local outlier detection in data
streams. The 24th ACM SIGKDD International Conference, London, United Kingdom. (pp.1993-2002). DOI:
. 3220022 doi:10.1145/3219819

Peng, T., Yang, N. Y., & Xu, Y. B. (2018). An Outlier Detection Method Based on Ranking and Clustering in Bi-
typed Heterogeneous Network. Tien Tzu Hsueh Pao, 46(2), 281–288. doi:10.3969/j.issn.0372-2112.2018.02.004

Saeed, H. (2017). LOF+: Fast outlier detection using the local correlation integral. Information Systems, 64, 1–14.

Tang, J., Liu, Z., Liao, S., & Su, Z. (2015). A clustering approach for local outlier detection. Information
Sciences, 316, 1–17.

Wang, J. H., & Jin, P. (2015). Outliers detecting based on rough reduction and grid. Computer Engineering and
Applications, 51(3), 133–137. doi:10.1201/b18565-28

Wang, J. H., Zhao, X. X., & Zhang, G. Y. (2013). NLOF:A New Density-based Local Outlier Detecting Algorithm.
Computer Science, 40(8), 181–185. doi:10.3969/j.issn.1002-137X.2013.08.038

Wang, X. T., Shen, D. R., & Bai, M. (2016). BOD:An Efficient Algorithm for Distributed Outlier Detection.
Chinese Journal of Computers, 39(1), 36–51. doi:10.11897/SP.J.1016.2016.00036

Wen, J. (2013). Density-based local outlier detection. Pattern Recognition, 46(7), 1914–1931.

Xin, L. L., He, W., & Yu, J. (2015). An outlier detection algorithm based on density difference. [Engineering
Science]. Journal of Shandong University, 45(3), 7–14. doi:10.6040/j.issn.1672-3961.1.2014.182

Xu, H. L., Tang, S., & Mao, R.i, et al. (2017). Various Pivots Based Outlier Detection Algorithm in Metric Space.
Chinese Journal of Computers, 40(12), 2839–2855. doi:10.11897/SP.J.1016.2017.02839

Yan, Y. Z., Cao, L., & Rundensteiner, E. A. (2017). Scalable top-n local outlier detection. The 23rd ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining. ACM. doi:10.1145/3097983.3098191

http://dx.doi.org/10.1016/j.neucom.2015.05.135
http://dx.doi.org/10.1145/342009.335388
http://dx.doi.org/10.11897/SP.J.1016.2017.02231
http://dx.doi.org/10.3969/j.issn.1001-3695.2018.06.015
http://dx.doi.org/10.3969/j.issn.1001-3695.2012.02.018
http://dx.doi.org/10.1371/journal.pone.0165972
http://www.ncbi.nlm.nih.gov/pubmed/27832163
http://dx.doi.org/10.1109/TNNLS.2016.2614896
http://www.ncbi.nlm.nih.gov/pubmed/27775542
http://dx.doi.org/10.1007/s11517-011-0790-7
http://www.ncbi.nlm.nih.gov/pubmed/21698432
http://dx.doi.org/10.1145/3219819
http://dx.doi.org/10.3969/j.issn.0372-2112.2018.02.004
http://dx.doi.org/10.1201/b18565-28
http://dx.doi.org/10.3969/j.issn.1002-137X.2013.08.038
http://dx.doi.org/10.11897/SP.J.1016.2016.00036
http://dx.doi.org/10.6040/j.issn.1672-3961.1.2014.182
http://dx.doi.org/10.11897/SP.J.1016.2017.02839
http://dx.doi.org/10.1145/3097983.3098191

International Journal of Grid and High Performance Computing
Volume 16 • Issue 1

16

Shuang Li is studying for Ph.D in business management from Lyceum Of The Philippines University Manila Campus.
She received her Master’s degree in Applied Economics from Hunan University. Currently, she is a lecturer at
the School of Information and Mechatronic Engineering, Hunan International Economics University, Her research
interests include e-commerce, business management.

Xiaoguo Yao, Corresponding author, He is in Hunan International Economics University, Changsha, China. He
is graduated from Lanzhou University of Technology with a master’s degree, intermediate automation engineer,
His research direction focuses on image processing, computer vision, artificial intelligence and other research.

Yin, N., & Zhang, L. (2017). Research on Application of Outlier Mining Based on Hybrid Clustering Algorithm
in Anomaly Detection. Computer Science, 44(5), 116–119. doi:10.11896/j.issn.1002-137X.2017.05.021

Yuan, Z., & Feng, S. (2018). Outlier detection algorithm based on neighborhood value difference metric. Jisuanji
Yingyong, 38(7), 1905–1909. doi:10.11772/j.issn.1001-9081.2017123028

Zhang, J., Sun, Z. H., & Yang, M. (2011). Fast Incremental Outlier Mining Algorithm Based on Grid and
Capacity. Journal of Computer Research and Development, 48(5), 823–830.

Zhou P., Cheng Y. Y. (2017). An Improved LOF Outlier Detection Algorithm. Computer Technology and
Development, 27(12), 115-118. doi:. 1673-629X.2017.12.02510.3969/j.issn

Zhu L., Qiu Y. Y., & Yu S. (2017). A Fast kNN-Based MST Outlier Detection Method. Chinese Journal of
Computers, 40(12): 2856-2870. doi:. 1016. 2017.0285610.11897/SP.J

http://dx.doi.org/10.11896/j.issn.1002-137X.2017.05.021
http://dx.doi.org/10.11772/j.issn.1001-9081.2017123028

